login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281315
Number of 2 X 2 matrices with all elements in {0,...,n} and prime determinant.
3
0, 0, 13, 46, 83, 191, 272, 509, 687, 1010, 1291, 2019, 2364, 3468, 4132, 5079, 6072, 8298, 9234, 12189, 13621, 15984, 18095, 22965, 24886, 29942, 33248, 38385, 42073, 51053, 53882, 64609, 70619, 78663, 85424, 96024, 101521, 118804, 127940, 140598, 149375, 172123, 179424, 205334, 218216
OFFSET
0,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1000 (terms 0..186 from Indranil Ghosh)
EXAMPLE
For n = 3, a few of the possible matrices are [1,0;3,3], [1,1;0,2], [1,1;0,3], [1,1;1,3], [1,2;0,2], [1,2;0,3], [1,3;0,2], [1,3;0,3], [2,0;0,1], [2,0;1,1], [2,0;2,1], [2,0;3,1], [2,1;0,1], [2,1;1,2], [2,1;1,3], [3,1;3,2], [3,2;0,1], [3,2;1,3], [3,2;2,2], [3,2;2,3], ... There are 46 possibilities.
Here each of the matrices M is defined as M = [a,b;c,d], where a= M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2]. So, a(3) = 46.
PROG
(Python)
from sympy import isprime
def t(n):
s=0
for a in range(n+1):
for d in range(n+1):
ad = a * d
for c in range(n+1):
for b in range(n+1):
if isprime(ad-b*c):
s+=1
return s
for i in range(187):
print(str(i)+" "+str(t(i)))
(Sage)
def A281315(n):
T = Tuples([i for i in range(n+1)], 4); i = 0
for t in T: i += is_prime(t[0]*t[3]-t[1]*t[2])
return i
[A281315(n) for n in range(20)] # Peter Luschny, Jul 23 2017
CROSSREFS
Cf. A210000.
Sequence in context: A141549 A121964 A147208 * A361622 A010003 A007587
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 20 2017
STATUS
approved