login
A001260
Number of permutations of length n with 4 consecutive ascending pairs.
(Formerly M3999 N1657)
6
0, 0, 0, 0, 1, 5, 45, 385, 3710, 38934, 444990, 5506710, 73422855, 1049946755, 16035550531, 260577696015, 4489954146860, 81781307674780, 1570201107355980, 31698434854748604, 671260973394676605, 14879618243581997745
OFFSET
1,6
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
(n-1)*a(n) = (n+3)*(a(n-1)*n + a(n-2)*n - a(n-1) + 2*a(n-2)).
E.g.f.: (for offset 4): (x^4/4!)*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
G.f.: (for offset 0): hypergeom([2, 5],[],x/(x+1))/(x+1)^5. - Mark van Hoeij, Nov 07 2011
Recurrence (for offset 5): (n-5)*a(n) = (n-5)*(n-1)*a(n-1) + (n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Mar 26 2014
a(n) ~ n! * exp(-1)/24. - Vaclav Kotesovec, Mar 26 2014
MAPLE
a:=n->sum((n+2)!*sum((-1)^k/k!/4!, j=1..n), k=0..n): seq(a(n), n=2..19); # Zerinvary Lajos, May 25 2007
series(hypergeom([2, 5], [], x/(x+1))/(x+1)^5, x=0, 30); # Mark van Hoeij, Nov 07 2011
MATHEMATICA
Drop[CoefficientList[Series[x^4/4! Exp[-x]/(1 - x)^2, {x, 0, 20}], x] Range[0, 20]!, 4] (* Vaclav Kotesovec, Mar 26 2014 *)
CROSSREFS
A diagonal in triangle A010027.
Sequence in context: A272494 A185009 A125836 * A088505 A067403 A173292
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Jan 03 2003
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014
STATUS
approved