The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001262 Strong pseudoprimes to base 2. 74
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The number 2^k-1 is in the sequence iff k is in A054723 or in A001567. - Thomas Ordowski, Sep 02 2016
The number (2^k+1)/3 is in the sequence iff k is in A127956. - Davide Rotondo, Aug 13 2021
REFERENCES
R. K. Guy, Unsolved Problems Theory Numbers, A12.
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000 (using data from A001567)
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792.
Chris Caldwell, Strong probable prime.
Eric Weisstein's World of Mathematics, Strong Pseudoprime.
OEIS Wiki, Strong Pseudoprime.
Wikipedia, Strong pseudoprime.
EXAMPLE
From Michael B. Porter, Sep 04 2016: (Start)
For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence.
For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. (End)
MAPLE
A007814 := proc(n) padic[ordp](n, 2) ; end proc:
isStrongPsp := proc(n, b) local d, s, r; if type(n, 'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d, n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d, n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:
isA001262 := proc(n) isStrongPsp(n, 2) ; end proc:
for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:
# R. J. Mathar, Apr 05 2011
MATHEMATICA
sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
PROG
(PARI)
isStrongPsp(n, b)={
my(s, d, r, bm) ;
if( (n% 2) ==0 || n <=1, return(0) ; ) ;
if(isprime(n), return(0) ; ) ;
s = valuation(n-1, 2) ;
d = (n-1)/2^s ;
bm = Mod(b, n)^d ;
if ( bm == Mod(1, n), return(1) ; ) ;
for(r=0, s-1,
bm = Mod(b, n)^d ;
if ( bm == Mod(-1, n),
return(1) ;
) ;
d *= 2;
) ;
return(0);
}
isA001262(n)={
isStrongPsp(n, 2)
}
{
for(n=1, 10000000000,
if(isA001262(n),
print(n)
) ;
) ;
} \\ R. J. Mathar, Mar 07 2012
(PARI) is_A001262(n, a=2)={ (bittest(n, 0) && !isprime(n) && n>8) || return; my(s=valuation(n-1, 2)); if(1==a=Mod(a, n)^(n>>s), return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012
CROSSREFS
Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).
Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).
Sequence in context: A241039 A278353 A038462 * A141232 A367230 A361256
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Aug 15 1996
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 15:12 EDT 2024. Contains 372657 sequences. (Running on oeis4.)