login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367230
Base-2 Fermat pseudoprimes k such that the multiplicative order of 2 modulo k is odd.
3
2047, 4681, 15841, 42799, 52633, 90751, 220729, 256999, 271951, 486737, 514447, 647089, 741751, 916327, 1082401, 1145257, 1730977, 1969417, 2205967, 2304167, 2748023, 2811271, 2953711, 2976487, 3567481, 4188889, 4469471, 4835209, 4863127, 5016191, 5049001, 5681809
OFFSET
1,1
COMMENTS
The corresponding sequence for primes is A014663.
These pseudoprimes seem to be relatively rare: among the 118968378 base-2 Fermat pseudoprimes below 2^64 only 6292535 are terms of this sequence.
These pseudoprimes appear in a theorem by Rotkiewicz and Makowski (1966) about pseudoprimes that are products of two Mersenne numbers (see A367229).
LINKS
Andrzej Rotkiewicz and Andrzej Makowski, On Pseudoprime Numbers of the Form M_p M_t, Elemente der Mathematik, Vol. 21 (1966), pp. 133-134.
MATHEMATICA
Select[2*Range[10^6] + 1, PowerMod[2, # - 1, #] == 1 && CompositeQ[#] && OddQ[MultiplicativeOrder[2, #]] &]
PROG
(PARI) is(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n) && znorder(Mod(2, n)) % 2;
CROSSREFS
Intersection of A001567 and A036259.
A367231 is a subsequence.
Sequence in context: A038462 A001262 A141232 * A361256 A360184 A062568
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2023
STATUS
approved