login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127956
Prime numbers p such that (2^p+1)/3 is composite.
12
29, 37, 41, 47, 53, 59, 67, 71, 73, 83, 89, 97, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 359, 367, 373
OFFSET
1,1
COMMENTS
If p-1 is squarefree, 2a(n) is the multiplicative order of 2 modulo every divisor d>1 of (2^p+1)/3. - Vladimir Shevelev, Jul 15 2008
MATHEMATICA
a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, Prime[x]]], {x, 2, 100}]; a
Select[Prime[Range[2, 100]], CompositeQ[(2^#+1)/3]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 09 2007
STATUS
approved