login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127956
Prime numbers p such that (2^p+1)/3 is composite.
12
29, 37, 41, 47, 53, 59, 67, 71, 73, 83, 89, 97, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 353, 359, 367, 373
OFFSET
1,1
COMMENTS
If p-1 is squarefree, 2a(n) is the multiplicative order of 2 modulo every divisor d>1 of (2^p+1)/3. - Vladimir Shevelev, Jul 15 2008
MATHEMATICA
a = {}; Do[c = (2^Prime[x] + 1)/3; If[PrimeQ[c] == False, AppendTo[a, Prime[x]]], {x, 2, 100}]; a
Select[Prime[Range[2, 100]], CompositeQ[(2^#+1)/3]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 09 2007
STATUS
approved