OFFSET
1,5
COMMENTS
Definition: Let N(n,x) = Sum_{j=0..n-1} x^j*C(n,j)^2*(n-j)/(n*(j+1)) for n>0 and N(0,x) = 1, further let p(n,x) be implicitly defined by N(n,k) = k!*[x^k](exp(x)*p(n,x)), then T(n,k) = [x^k] p(n,x).
FORMULA
EXAMPLE
Triangle T(n,k) begins:
[n\k][0, 1, 2, 3, 4, 5, 6, 8, 9]
[1] 1,
[2] 1, 1,
[3] 1, 4, 1,
[4] 1, 13, 9, 1,
[5] 1, 41, 57, 16, 1,
[6] 1, 131, 320, 165, 25, 1,
[7] 1, 428, 1711, 1420, 380, 36, 1,
[8] 1, 1429, 8967, 11151, 4620, 756, 49, 1,
[9] 1, 4861, 46663, 83202, 49665, 12306, 1358, 64, 1.
.
The sequence N(7,k) = 1 + 21*k + 105*k^2 + 175*k^3 + 105*k^4 + 21*k^5 + k^6 = 1, 429, 4279, 20071, 65445, ... = A090200(k) has the exponential generating function exp(x)*(1 + 428*x + 1711*x^2 + 1420*x^3 + 380*x^4 + 36*x^5 + x^6). Thus T(7,3) = 1420.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 18 2014
STATUS
approved