login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090200
a(n) = N(7,n), where N(7,x) is the 7th Narayana polynomial.
7
1, 429, 4279, 20071, 65445, 171481, 387739, 788019, 1476841, 2596645, 4335711, 6936799, 10706509, 16025361, 23358595, 33267691, 46422609, 63614749, 85770631, 113966295, 149442421, 193620169, 248117739, 314767651
OFFSET
0,2
FORMULA
a(n) = N(7, n) = Sum_{k>0} A001263(7, k)*n^(k-1) = n^6 + 21*n^5 + 105*n^4 + 175*n^3 + 105*n^2 + 21*n + 1.
G.f.: (1 +422*x +1297*x^2 -908*x^3 -173*x^4 +86*x^5 -5*x^6)/(1-x)^7. - Philippe Deléham, Apr 03 2013; corrected by Georg Fischer, May 02 2019
E.g.f.: (1 +428*x +1711*x^2 +1420*x^3 +380*x^4 +36*x^5 +x^6)*exp(x). - G. C. Greubel, Feb 16 2021
MAPLE
A090200:= n-> n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1; seq(A090200(n), n=0..30) # G. C. Greubel, Feb 16 2021
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 429, 4279, 20071, 65445, 171481, 387739}, 30] (* Harvey P. Dale, Feb 10 2019 *)
PROG
(PARI) a(n) = n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 \\ Charles R Greathouse IV, Jan 17 2012
(Sage) [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 for n in (0..30)] # G. C. Greubel, Feb 16 2021
(Magma) [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1: n in [0..30]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 22 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved