The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090197 a(n) = n^3 + 6*n^2 + 6*n + 1. 5
 1, 14, 45, 100, 185, 306, 469, 680, 945, 1270, 1661, 2124, 2665, 3290, 4005, 4816, 5729, 6750, 7885, 9140, 10521, 12034, 13685, 15480, 17425, 19526, 21789, 24220, 26825, 29610, 32581, 35744, 39105, 42670, 46445, 50436, 54649, 59090, 63765 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS N(4,n) where N(4,x) is the 4th Narayana polynomial. a(n) + A016921(n+1) = (n+2)^3. [Bruno Berselli, Jun 24 2012] LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = N(4,n) = Sum_{k>0} A001263(4, k)*n^(k-1) = (n+1)*(n^2+5*n+1). G.f.: (1 + 10*x - 5*x^2) / (x-1)^4. - R. J. Mathar, Sep 07 2011 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012 MATHEMATICA LinearRecurrence[{4, -6, 4, -1}, {1, 14, 45, 100}, 40] (* Vincenzo Librandi, Jun 24 2012 *) PROG (PARI) n^3+6*n^2+6*n+1 \\ Charles R Greathouse IV, Jan 17 2012 (MAGMA) I:=[1, 14, 45, 100]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012 CROSSREFS For N(3,n), see A028387. Sequence in context: A328243 A123295 A092350 * A010742 A232872 A232855 Adjacent sequences:  A090194 A090195 A090196 * A090198 A090199 A090200 KEYWORD nonn,easy AUTHOR Philippe Deléham, Jan 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 10:56 EDT 2020. Contains 333301 sequences. (Running on oeis4.)