login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090199
a(n) = N(6,n), where N(6,x) is the 6th Narayana polynomial.
6
1, 132, 903, 3304, 8925, 20076, 39907, 72528, 123129, 198100, 305151, 453432, 653653, 918204, 1261275, 1698976, 2249457, 2933028, 3772279, 4792200, 6020301, 7486732, 9224403, 11269104, 13659625, 16437876, 19649007, 23341528, 27567429
OFFSET
0,2
FORMULA
a(n) = N(6, n)= Sum_{k>0} A001263(6, k)*n^(k-1) = n^5 + 15*n^4 + 50*n^3 + 50*n^2 + 15*n + 1.
G.f.: (1 +126*x +126*x^2 -154*x^3 +21*x^4)/(1-x)^6. - Philippe Deléham, Apr 03 2013
E.g.f.: (1 +131*x +320*x^2 +165*x^3 +25*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 16 2021
MATHEMATICA
Table[(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1), {n, 0, 30}] (* G. C. Greubel, Feb 16 2021 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 132, 903, 3304, 8925, 20076}, 30] (* or *) CoefficientList[Series[(1+126 x+126 x^2-154 x^3+21 x^4)/(-1+x)^6, {x, 0, 30}], x] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) a(n)=n^5+15*n^4+50*n^3+50*n^2+15*n+1 \\ Charles R Greathouse IV, Jan 17 2012
(Sage) [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1) for n in (0..30)] # G. C. Greubel, Feb 16 2021
(Magma) [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1): n in [0..30]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 22 2004
EXTENSIONS
Corrected generating function in Formula field. - Harvey P. Dale, Jul 24 2021
STATUS
approved