login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = N(6,n), where N(6,x) is the 6th Narayana polynomial.
6

%I #28 Jul 24 2021 18:12:56

%S 1,132,903,3304,8925,20076,39907,72528,123129,198100,305151,453432,

%T 653653,918204,1261275,1698976,2249457,2933028,3772279,4792200,

%U 6020301,7486732,9224403,11269104,13659625,16437876,19649007,23341528,27567429

%N a(n) = N(6,n), where N(6,x) is the 6th Narayana polynomial.

%H G. C. Greubel, <a href="/A090199/b090199.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = N(6, n)= Sum_{k>0} A001263(6, k)*n^(k-1) = n^5 + 15*n^4 + 50*n^3 + 50*n^2 + 15*n + 1.

%F G.f.: (1 +126*x +126*x^2 -154*x^3 +21*x^4)/(1-x)^6. - _Philippe Deléham_, Apr 03 2013

%F E.g.f.: (1 +131*x +320*x^2 +165*x^3 +25*x^4 +x^5)*exp(x). - _G. C. Greubel_, Feb 16 2021

%t Table[(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1), {n,0,30}] (* _G. C. Greubel_, Feb 16 2021 *)

%t LinearRecurrence[{6,-15,20,-15,6,-1},{1,132,903,3304,8925,20076},30] (* or *) CoefficientList[Series[(1+126 x+126 x^2-154 x^3+21 x^4)/(-1+x)^6,{x,0,30}],x] (* _Harvey P. Dale_, Jul 24 2021 *)

%o (PARI) a(n)=n^5+15*n^4+50*n^3+50*n^2+15*n+1 \\ _Charles R Greathouse IV_, Jan 17 2012

%o (Sage) [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1) for n in (0..30)] # _G. C. Greubel_, Feb 16 2021

%o (Magma) [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1): n in [0..30]]; // _G. C. Greubel_, Feb 16 2021

%Y Cf. A001263, A008550, A090198, A090200.

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Jan 22 2004

%E Corrected generating function in Formula field. - _Harvey P. Dale_, Jul 24 2021