login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247501
Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247498 (the Swiss-Knife polynomials evaluated at nonnegative integers).
1
1, 1, 1, 0, 3, 2, -2, 4, 12, 6, 0, -3, 38, 60, 24, 16, -14, 60, 330, 360, 120, 0, 63, 2, 1200, 3000, 2520, 720, -272, 274, 252, 3066, 17640, 29400, 20160, 5040, 0, -1383, 3278, 8820, 81144, 246960, 312480, 181440, 40320
OFFSET
0,5
FORMULA
Let skp_{n}(x) denote the Swiss-Knife polynomials A153641. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*skp_n(k).
T(n, 0) = A155585(n).
T(n, n) = A000142(n) = n!.
T(n,n-1)= A001710(n+1) for n>=1.
EXAMPLE
Triangle starts:
[ 1]
[ 1, 1]
[ 0, 3, 2]
[ -2, 4, 12, 6]
[ 0, -3, 38, 60, 24]
[ 16, -14, 60, 330, 360, 120]
[ 0, 63, 2, 1200, 3000, 2520, 720]
[-272, 274, 252, 3066, 17640, 29400, 20160, 5040]
.
[n=3] -> [-2,4,12,6] -> -2/(x-1)+4/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = -2*x*(-5*x+x^2+1)/(x-1)^4; g. f. of A247498[n,3] = 0,-2,2,18, ...
[n=4] -> [0,-3,38,60,24] -> 3/(x-1)^2-38/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = (-47*x^2+3*x^3+25*x-5)/(x-1)^5; g. f. of A247498[n,4] = 5,0,-3,32, ...
MAPLE
Trans := proc(T, n) local L, S, k, j, h, r, c;
c := k -> k!*coeff(series(T, t, k+2), t, k);
S := [seq([seq(coeff(c(k), x, j), j=0..k)], k=0..n)];
L := proc(m, k) add(S[m+1][j+1]*k^j, j=0..m) end;
h := sum(x^j*L(n, j), j=0..infinity); r := convert(h, parfrac);
[seq((-1)^(n+1)*coeff(r, (x-1)^(-k-1)), k=0..n)] end:
A247501_row := n -> Trans(exp(x*t)*sech(t), n):
seq(print(A247501_row(n)), n=0..7);
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Dec 14 2014
STATUS
approved