The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247501 Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247498 (the Swiss-Knife polynomials evaluated at nonnegative integers). 1
 1, 1, 1, 0, 3, 2, -2, 4, 12, 6, 0, -3, 38, 60, 24, 16, -14, 60, 330, 360, 120, 0, 63, 2, 1200, 3000, 2520, 720, -272, 274, 252, 3066, 17640, 29400, 20160, 5040, 0, -1383, 3278, 8820, 81144, 246960, 312480, 181440, 40320 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA Let skp_{n}(x) denote the Swiss-Knife polynomials A153641. The T(n,k) are implicitly defined by: sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*skp_n(k). T(n, 0) = A155585(n). T(n, n) = A000142(n) = n!. T(n,n-1)= A001710(n+1) for n>=1. EXAMPLE Triangle starts: [   1] [   1,   1] [   0,   3,   2] [  -2,   4,  12,    6] [   0,  -3,  38,   60,    24] [  16, -14,  60,  330,   360,   120] [   0,  63,   2, 1200,  3000,  2520,   720] [-272, 274, 252, 3066, 17640, 29400, 20160, 5040] . [n=3] -> [-2,4,12,6] -> -2/(x-1)+4/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = -2*x*(-5*x+x^2+1)/(x-1)^4; g. f. of A247498[n,3] = 0,-2,2,18, ... [n=4] -> [0,-3,38,60,24] -> 3/(x-1)^2-38/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = (-47*x^2+3*x^3+25*x-5)/(x-1)^5; g. f. of A247498[n,4] = 5,0,-3,32, ... MAPLE Trans := proc(T, n) local L, S, k, j, h, r, c; c := k -> k!*coeff(series(T, t, k+2), t, k); S := [seq([seq(coeff(c(k), x, j), j=0..k)], k=0..n)]; L := proc(m, k) add(S[m+1][j+1]*k^j, j=0..m) end; h := sum(x^j*L(n, j), j=0..infinity); r := convert(h, parfrac); [seq((-1)^(n+1)*coeff(r, (x-1)^(-k-1)), k=0..n)] end: A247501_row := n -> Trans(exp(x*t)*sech(t), n): seq(print(A247501_row(n)), n=0..7); CROSSREFS Cf. A247498, A153641, A155585, A001710. Sequence in context: A230871 A111241 A345055 * A192183 A133518 A120729 Adjacent sequences:  A247498 A247499 A247500 * A247502 A247503 A247504 KEYWORD sign,tabl AUTHOR Peter Luschny, Dec 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 06:11 EDT 2021. Contains 345416 sequences. (Running on oeis4.)