OFFSET
0,5
FORMULA
EXAMPLE
Triangle starts:
[ 1]
[ 1, 1]
[ 0, 3, 2]
[ -2, 4, 12, 6]
[ 0, -3, 38, 60, 24]
[ 16, -14, 60, 330, 360, 120]
[ 0, 63, 2, 1200, 3000, 2520, 720]
[-272, 274, 252, 3066, 17640, 29400, 20160, 5040]
.
[n=3] -> [-2,4,12,6] -> -2/(x-1)+4/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = -2*x*(-5*x+x^2+1)/(x-1)^4; g. f. of A247498[n,3] = 0,-2,2,18, ...
[n=4] -> [0,-3,38,60,24] -> 3/(x-1)^2-38/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = (-47*x^2+3*x^3+25*x-5)/(x-1)^5; g. f. of A247498[n,4] = 5,0,-3,32, ...
MAPLE
Trans := proc(T, n) local L, S, k, j, h, r, c;
c := k -> k!*coeff(series(T, t, k+2), t, k);
S := [seq([seq(coeff(c(k), x, j), j=0..k)], k=0..n)];
L := proc(m, k) add(S[m+1][j+1]*k^j, j=0..m) end;
h := sum(x^j*L(n, j), j=0..infinity); r := convert(h, parfrac);
[seq((-1)^(n+1)*coeff(r, (x-1)^(-k-1)), k=0..n)] end:
A247501_row := n -> Trans(exp(x*t)*sech(t), n):
seq(print(A247501_row(n)), n=0..7);
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Dec 14 2014
STATUS
approved