login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082771
Triangular array, read by rows: t(n,k) = Sum(d^k: d|n), 0<=k<n.
7
1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Divisor Function
FORMULA
t(n, k) = Product(((p^((e(n, p)+1)*k))-1)/(p^k-1): n=Product(p^e(n, p): p prime)), 0<=k<n.
t(n,0) = A000005(n), t(n,n) = A023887(n).
t(n,1) = A000203(n), n>1; t(n,2) = A001157(n), n>2; t(n,3) = A001158(n), n>3.
t(n,4) = A001159(n), n>4; t(n,5) = A001160(n), n>5; t(n,6) = A013954(n), n>6.
From R. J. Mathar, Oct 29 2006: (Start)
t(2,k) = A000051(k); t(3,k) = A034472(k); t(4,k) = A001576(k);
t(5,k) = A034474(k); t(6,k) = A034488(k); t(7,k) = A034491(k);
t(8,k) = A034496(k); t(9,k) = A034513(k); t(10,k) = A034517(k);
t(11,k) = A034524(k); t(12,k) = A034660(k). (End)
EXAMPLE
The triangle may be extended to a rectangular array (A319278):
1 1 1 1 1 1 1 1 1 1 1 ...
2 3 5 9 17 33 65 129 257 513 1025 ...
2 4 10 28 82 244 730 2188 6562 19684 59050 ...
3 7 21 73 273 1057 4161 16513 65793 262657 1049601 ...
2 6 26 126 626 3126 15626 78126 390626 1953126 9765626 ...
4 12 50 252 1394 8052 47450 282252 1686434 10097892 60526250 ...
2 8 50 344 2402 16808 117650 823544 5764802 40353608 282475250 ...
4 15 85 585 4369 33825 266305 2113665 16843009 134480385 1074791425 ...
3 13 91 757 6643 59293 532171 4785157 43053283 387440173 3486843451 ...
4 18 130 1134 10642 103158 1015690 10078254 100390882 1001953638...
MAPLE
T:= (n, k)-> numtheory[sigma][k](n):
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Oct 25 2024
MATHEMATICA
T[n_, k_] := DivisorSigma[k, n];
Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, May 21 2003
EXTENSIONS
Corrected by R. J. Mathar, Dec 05 2006
STATUS
approved