login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304489
Triangle read by rows: T(n,k) = number of rooted signed trees with n nodes and k positive edges (0 <= k < n).
4
1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 9, 26, 37, 26, 9, 20, 75, 134, 134, 75, 20, 48, 214, 469, 596, 469, 214, 48, 115, 612, 1577, 2445, 2445, 1577, 612, 115, 286, 1747, 5204, 9480, 11513, 9480, 5204, 1747, 286, 719, 4995, 16865, 35357, 50363, 50363, 35357, 16865, 4995, 719
OFFSET
1,4
COMMENTS
Equivalently, the number of rooted trees with 2-colored non-root nodes, n nodes and k nodes of the first color.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 2;
4, 9, 9, 4;
9, 26, 37, 26, 9;
20, 75, 134, 134, 75, 20;
48, 214, 469, 596, 469, 214, 48;
115, 612, 1577, 2445, 2445, 1577, 612, 115;
286, 1747, 5204, 9480, 11513, 9480, 5204, 1747, 286;
...
PROG
(PARI)
R(n, y)={my(v=vector(n)); v[1]=1; for(k=1, n-1, my(p=(1+y)*v[k]); my(q=Vec(prod(j=0, poldegree(p, y), (1/(1-x*y^j) + O(x*x^(n\k)))^polcoeff(p, j)))); v=vector(n, j, v[j] + sum(i=1, (j-1)\k, v[j-i*k] * q[i+1]))); v; }
{ my(A=R(10, y)); for(n=1, #A, print(Vecrev(A[n]))) }
(PARI)
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
R(n, y)={my(v=[1]); for(k=2, n, v=concat([1], EulerMT(v*(1+y)))); v}
{ my(A=R(10, y)); for(n=1, #A, print(Vecrev(A[n]))) }
CROSSREFS
Row sums are A000151.
Columns k=0..1 are A000081, A000243.
Sequence in context: A231150 A274858 A207997 * A034800 A082771 A127157
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 13 2018
STATUS
approved