login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231150
Array of coefficients of numerator polynomials of the rational function p(n, x^(1/2)+x^(-1/2)), where p(n,x) is the n-th Chebyshev polynomial of the 1st kind.
0
1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 24, 33, 24, 8, 16, 60, 105, 105, 60, 16, 32, 144, 306, 387, 306, 144, 32, 64, 336, 840, 1281, 1281, 840, 336, 64, 128, 768, 2208, 3936, 4737, 3936, 2208, 768, 128, 256, 1728, 5616, 11448, 16065, 16065, 11448, 5616, 1728, 256
OFFSET
0,3
EXAMPLE
First 6 rows:
1
1 .... 1
2 .... 3 ..... 2
4 .... 9 ..... 9 ...... 4
8 .... 24 .... 33 .... 24 .... 8
16 ... 60 .... 105 ... 105 ... 60 ... 16
The first 4 polynomials: 1, 1 + x, 2 + 3*x + 2*x^2, 4 + 9*x + 9*x^2 + 4*x^3.
MATHEMATICA
z = 60; p[n_, x_] := p[n, x] = ChebyshevT[n, x]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> Sqrt[x] + 1/Sqrt[x]]]; Table[Expand[f1[n, x]], {n, 0, z/4}]; t = Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
CROSSREFS
Cf. A231147.
Sequence in context: A274803 A274749 A247936 * A274858 A207997 A304489
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Nov 08 2013
STATUS
approved