

A231153


Greatest integer k such that prime(n+1) + ... + prime(n+k) <= prime(1) + ... + prime(n).


3



1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 26
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


COMMENTS

a(n) is the greatest k such that 2*s(n) >= s(n+k), where s(n) is the nth partial sum of primes.


LINKS

Table of n, a(n) for n=2..72.


FORMULA

a(n) = A231152(n)  1.


EXAMPLE

5 <= 2 + 3 < 5 + 7, so a(2) = 1.
19 + 23 <= 2 + 3 + 5 + 7 + 11 + 13 + 17 < 19 + 23 + 29, so a(7) = 2.


MATHEMATICA

test = 0; Table[test = test + Prime[n]; tmp = 0; NestWhile[# + 1 &, n, test >= (tmp = tmp + Prime[#]) &]  n, {n, 1, 80}] (* Peter J. C. Moses, Nov 02 2013 *)


CROSSREFS

Cf. A007504, A231149, A231152.
Sequence in context: A113675 A020912 A194990 * A330557 A099199 A172474
Adjacent sequences: A231150 A231151 A231152 * A231154 A231155 A231156


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Nov 09 2013


STATUS

approved



