login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231147
Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) = (x^n - 1)/(x - 1).
16
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 4, 9, 4, 5, 1, 1, 1, 1, 6, 5, 14, 9, 14, 5, 6, 1, 1, 1, 1, 7, 6, 20, 14, 29, 14, 20, 6, 7, 1, 1, 1, 1, 8, 7, 27, 20, 49, 29, 49, 20, 27, 7, 8, 1, 1, 1, 1, 9, 8, 35, 27, 76, 49, 99, 49, 76, 27, 35, 8, 9
OFFSET
1,7
COMMENTS
From Gus Wiseman, Mar 19 2023: (Start)
Also appears to be the number of nonempty subsets of {1,...,n} with median k, where k ranges from 1 to n in steps of 1/2, and the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets:
{1} {1,2} {2} {1,4} {3} {2,5} {4} {4,5} {5}
{1,3} {2,3} {1,5} {3,4} {3,5}
{1,2,3} {1,2,3,4} {2,4} {1,3,4,5} {1,4,5}
{1,2,4} {1,2,3,5} {1,3,4} {2,3,4,5} {2,4,5}
{1,2,5} {1,3,5} {3,4,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Central diagonals T(n,(n+1)/2) appear to be A100066 (bisection A006134).
For mean instead of median we have A327481.
For partitions instead of subsets we have A359893, full steps A359901.
Central diagonals T(n,n/2) are A361801 (bisection A079309).
(End)
LINKS
John Tyler Rascoe, Rows n = 1..100, flattened
EXAMPLE
Triangle begins:
1
1 1 1
1 1 3 1 1
1 1 4 3 4 1 1
1 1 5 4 9 4 5 1 1
1 1 6 5 14 9 14 5 6 1 1
1 1 7 6 20 14 29 14 20 6 7 1 1
1 1 8 7 27 20 49 29 49 20 27 7 8 1 1
1 1 9 8 35 27 76 49 99 49 76 27 35 8 9 1 1
First 3 polynomials: 1, 1 + x + x^2, 1 + x + 3*x^2 + x^3 + x^4
MATHEMATICA
z = 60; p[n_, x_] := p[x] = (x^n - 1)/(x - 1); Table[p[n, x], {n, 1, z/4}]; f1[n_, x_] := f1[n, x] = Numerator[Factor[p[n, x] /. x -> x + 1/x]]; Table[Expand[f1[n, x]], {n, 0, z/4}]
Flatten[Table[CoefficientList[f1[n, x], x], {n, 1, z/4}]]
PROG
(PARI)
A231147_row(n) = {Vecrev(Vec(numerator((-1+(x+(1/x))^n)/(x+(1/x)-1))))} \\ John Tyler Rascoe, Sep 10 2024
CROSSREFS
Cf. A231148.
Row sums are 2^n-1 = A000225(n).
Row lengths are 2n-1 = A005408(n-1).
Removing every other column appears to give A013580.
Sequence in context: A367988 A372692 A363925 * A046534 A224489 A318933
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Nov 05 2013
STATUS
approved