login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367988
The sum of the divisors of the square root of the largest unitary divisor of n that is a square.
3
1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1
OFFSET
1,4
LINKS
FORMULA
Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise.
a(n) = A000203(A071974(n)).
a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)).
MATHEMATICA
f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, (f[i, 1]^(f[i, 2]/2 + 1) - 1)/(f[i, 1] - 1))); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 07 2023
STATUS
approved