The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A367988 The sum of the divisors of the square root of the largest unitary divisor of n that is a square. 3
 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 1, 3, 1, 1, 1, 7, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 7, 8, 6, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 15, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 6, 3, 1, 1, 1, 7, 13, 1, 1, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise. a(n) = A000203(A071974(n)). a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335). Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)). MATHEMATICA f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] PROG (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, (f[i, 1]^(f[i, 2]/2 + 1) - 1)/(f[i, 1] - 1))); } CROSSREFS Cf. A000203, A071974, A268335, A351568, A367987. Sequence in context: A122947 A367990 A360162 * A372692 A363925 A231147 Adjacent sequences: A367985 A367986 A367987 * A367989 A367990 A367991 KEYWORD nonn,easy,mult AUTHOR Amiram Eldar, Dec 07 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)