login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of the divisors of the square root of the largest unitary divisor of n that is a square.
3

%I #7 Dec 07 2023 10:25:39

%S 1,1,1,3,1,1,1,1,4,1,1,3,1,1,1,7,1,4,1,3,1,1,1,1,6,1,1,3,1,1,1,1,1,1,

%T 1,12,1,1,1,1,1,1,1,3,4,1,1,7,8,6,1,3,1,1,1,1,1,1,1,3,1,1,4,15,1,1,1,

%U 3,1,1,1,4,1,1,6,3,1,1,1,7,13,1,1,3,1,1

%N The sum of the divisors of the square root of the largest unitary divisor of n that is a square.

%H Amiram Eldar, <a href="/A367988/b367988.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = (p^(e/2+1)-1)/(p-1) if e is even and 1 otherwise.

%F a(n) = A000203(A071974(n)).

%F a(n) >= 1, with equality if and only if n is an exponentially odd number (A268335).

%F Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1)).

%t f[p_, e_] := If[EvenQ[e], (p^(e/2 + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, 1, (f[i,1]^(f[i,2]/2 + 1) - 1)/(f[i,1] - 1)));}

%Y Cf. A000203, A071974, A268335, A351568, A367987.

%K nonn,easy,mult

%O 1,4

%A _Amiram Eldar_, Dec 07 2023