login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367985
Number of 4-cycles in the n-cycle complement and (n+1)-wheel complement graph.
0
0, 0, 0, 3, 14, 42, 99, 200, 363, 609, 962, 1449, 2100, 2948, 4029, 5382, 7049, 9075, 11508, 14399, 17802, 21774, 26375, 31668, 37719, 44597, 52374, 61125, 70928, 81864, 94017, 107474, 122325, 138663, 156584, 176187, 197574, 220850, 246123, 273504, 303107
OFFSET
3,4
LINKS
Eric Weisstein's World of Mathematics, Cycle Complement Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Wheel Complement Graph.
FORMULA
a(n) = (n - 5)*n*(n^2 - 9*n + 22)/8 for n >= 5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n >= 5.
G.f.: x^6*(-3+x-2*x^2+x^3)/(-1+x)^5.
MATHEMATICA
Join[{0, 0}, Table[(n - 5) n (n^2 - 9 n + 22)/8, {n, 5, 20}]
Join[{0, 0}, LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 14, 42, 99}, 20]]
CoefficientList[Series[x^3 (-3 + x - 2 x^2 + x^3)/(-1 + x)^5, {x, 0, 20}], x]
CROSSREFS
Sequence in context: A296267 A104905 A055650 * A000550 A124650 A291138
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 07 2023
EXTENSIONS
Name extended by Eric W. Weisstein, Dec 07 2023
STATUS
approved