login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296267
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 3, 14, 41, 90, 179, 332, 591, 1022, 1733, 2898, 4811, 7917, 12983, 21188, 34494, 56042, 90935, 147417, 238835, 386780, 626190, 1013594, 1640459, 2654781, 4296023, 6951644, 11248566, 18201170, 29450759, 47653017, 77104931, 124759172, 201865398, 326625938
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 3, b(1) = 2, b(2) = 4, b(3) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 14;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
MATHEMATICA
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296267 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A117662 A196236 A213482 * A104905 A055650 A367985
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 12 2017
STATUS
approved