login
A013963
a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.
11
1, 32769, 14348908, 1073774593, 30517578126, 470199366252, 4747561509944, 35185445863425, 205891146443557, 1000030517610894, 4177248169415652, 15407492847694444, 51185893014090758, 155572843119354936, 437893920912786408, 1152956690052710401, 2862423051509815794
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^15*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-15)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(15*e+15)-1)/(p^15-1).
Sum_{k=1..n} a(k) = zeta(16) * n^16 / 16 + O(n^17). (End)
MATHEMATICA
DivisorSigma[15, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
PROG
(Sage) [sigma(n, 15)for n in range(1, 15)] # Zerinvary Lajos, Jun 04 2009
(Magma) [DivisorSigma(15, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
(PARI) my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^15*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
(PARI) a(n) = sigma(n, 15); \\ Amiram Eldar, Oct 29 2023
KEYWORD
nonn,mult,easy
STATUS
approved