login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247492
Triangle read by rows: T(n, k) = binomial(k-1, n-k)*(n+1)/(n+1-k), 0 <= k <= n.
0
1, -1, 2, 1, 0, 3, -1, 0, 2, 4, 1, 0, 0, 5, 5, -1, 0, 0, 2, 9, 6, 1, 0, 0, 0, 7, 14, 7, -1, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 9, 30, 27, 9, -1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, -1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12
OFFSET
0,3
FORMULA
Sum_{k = 0..n} T(n, k) = A001350(n+1).
G.f.: (x^2*y + 1)/((x^4 + 2*x^3 + x^2)*y^2 + (-x^3 - 3*x^2 - 2*x)*y + x + 1). Or: (x^2*y + 1)/((x + 1)*(x*y - 1)*(x^2*y + x*y - 1)). - Vladimir Kruchinin, Oct 23 2021
EXAMPLE
[0] 1;
[1] -1, 2;
[2] 1, 0, 3;
[3] -1, 0, 2, 4;
[4] 1, 0, 0, 5, 5;
[5] -1, 0, 0, 2, 9, 6;
[6] 1, 0, 0, 0, 7, 14, 7;
.
Taylor series: 1 + x*(2*y - 1) + x^2*(3*y^2 + 1) + x^3*(4*y^3 + 2*y^2 - 1) + x^4*(5*y^4 + 5*y^3 + 1) + O(x^5).
MAPLE
T := (n, k) -> (n+1)*binomial(k-1, n-k)/(n+1-k);
for n from 0 to 11 do seq(T(n, k), k=0..n) od;
CROSSREFS
Cf. A001350 (row sums), A098599, A100218.
Sequence in context: A376789 A127013 A117362 * A113214 A280494 A168016
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 01 2014
STATUS
approved