OFFSET
1,3
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
EXAMPLE
Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1, 2,
n=3 ............................... 1, 0, 3,
n=4 ............................ 1, 0, 2, 5,
n=5 ......................... 1, 0, 0, 0, 7,
n=6 ...................... 1, 0, 0, 2, 3, 11,
n=7 ................... 1, 0, 0, 0, 0, 0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0, 5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3, 0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0, 7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
MATHEMATICA
T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
PROG
(SageMath)
def T(n, k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Jan 12 2023
CROSSREFS
KEYWORD
AUTHOR
Omar E. Pol, Nov 21 2009
EXTENSIONS
Edited and extended by Max Alekseyev, May 07 2010
STATUS
approved