login
A168016
Triangle T(n,k) read by rows in which row n list the number of partitions of n into parts divisible by k for k=n,n-1,...,1.
8
1, 1, 2, 1, 0, 3, 1, 0, 2, 5, 1, 0, 0, 0, 7, 1, 0, 0, 2, 3, 11, 1, 0, 0, 0, 0, 0, 15, 1, 0, 0, 0, 2, 0, 5, 22, 1, 0, 0, 0, 0, 0, 3, 0, 30, 1, 0, 0, 0, 0, 2, 0, 0, 7, 42, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56, 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101
OFFSET
1,3
FORMULA
T(n, k) = A000041(n/k) if k|n; otherwise T(n,k) = 0.
T(n, n) = A000041(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = A000007(n-1).
Sum_{k=1..n} T(n, k) = A047968(n).
Sum_{k=2..n-1} T(n, k) = A168111(n-1). (End)
EXAMPLE
Triangle begins:
==============================================
.... k: 12 11 10. 9. 8. 7. 6. 5. 4. 3.. 2.. 1.
==============================================
n=1 ....................................... 1,
n=2 ................................... 1, 2,
n=3 ............................... 1, 0, 3,
n=4 ............................ 1, 0, 2, 5,
n=5 ......................... 1, 0, 0, 0, 7,
n=6 ...................... 1, 0, 0, 2, 3, 11,
n=7 ................... 1, 0, 0, 0, 0, 0, 15,
n=8 ................ 1, 0, 0, 0, 2, 0, 5, 22,
n=9 ............. 1, 0, 0, 0, 0, 0, 3, 0, 30,
n=10 ......... 1, 0, 0, 0, 0, 2, 0, 0, 7, 42,
n=11 ...... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56,
n=12 ... 1, 0, 0, 0, 0, 0, 2, 0, 3, 5, 11, 77,
...
MATHEMATICA
T[n_, k_]:= If[IntegerQ[n/(n-k+1)], PartitionsP[n/(n-k+1)], 0];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
PROG
(SageMath)
def T(n, k): return number_of_partitions(n/(n-k+1)) if (n%(n-k+1))==0 else 0
flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Jan 12 2023
KEYWORD
easy,nonn,tabl
AUTHOR
Omar E. Pol, Nov 21 2009
EXTENSIONS
Edited and extended by Max Alekseyev, May 07 2010
STATUS
approved