login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168021
Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.
16
1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 7, 0, 0, 0, 1, 11, 3, 2, 0, 0, 1, 15, 0, 0, 0, 0, 0, 1, 22, 5, 0, 2, 0, 0, 0, 1, 30, 0, 3, 0, 0, 0, 0, 0, 1, 42, 7, 0, 0, 2, 0, 0, 0, 0, 1, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 77, 11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1
OFFSET
1,2
COMMENTS
The row-reversed version is A168016.
Also see A168020.
FORMULA
T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)
EXAMPLE
Triangle begins:
==============================================
...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12
==============================================
n=1 ..... 1,
n=2 ..... 2, 1,
n=3 ..... 3, 0, 1,
n=4 ..... 5, 2, 0, 1,
n=5 ..... 7, 0, 0, 0, 1,
n=6 .... 11, 3, 2, 0, 0, 1,
n=7 .... 15, 0, 0, 0, 0, 0, 1,
n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,
n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,
n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,
n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
MATHEMATICA
T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
PROG
(SageMath)
def A168021(n, k): return number_of_partitions(n/k) if (n%k)==0 else 0
flatten([[A168021(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Jan 12 2023
KEYWORD
easy,nonn,tabl
AUTHOR
Omar E. Pol, Nov 20 2009, Nov 21 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Mar 23 2010
STATUS
approved