OFFSET
1,2
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.
Sum_{k=1..n} T(n, k) = A047968(n).
From G. C. Greubel, Jan 12 2023: (Start)
T(2*n, n) = 2*A000012(n).
T(2*n-1, n+1) = A000007(n-2). (End)
EXAMPLE
Triangle begins:
==============================================
...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12
==============================================
n=1 ..... 1,
n=2 ..... 2, 1,
n=3 ..... 3, 0, 1,
n=4 ..... 5, 2, 0, 1,
n=5 ..... 7, 0, 0, 0, 1,
n=6 .... 11, 3, 2, 0, 0, 1,
n=7 .... 15, 0, 0, 0, 0, 0, 1,
n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,
n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,
n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,
n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,
...
MATHEMATICA
T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jan 12 2023 *)
PROG
(SageMath)
def A168021(n, k): return number_of_partitions(n/k) if (n%k)==0 else 0
flatten([[A168021(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Jan 12 2023
CROSSREFS
KEYWORD
AUTHOR
Omar E. Pol, Nov 20 2009, Nov 21 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Mar 23 2010
STATUS
approved