OFFSET
1,3
COMMENTS
Positive values of triangle A168016.
The number of terms of row n is equal to the number of divisors of n: A000005(n).
Note that the last term of each row is the number of partitions of n: A000041(n).
Also, it appears that row n lists the partition numbers of the divisors of n. [Omar E. Pol, Nov 23 2009]
LINKS
Alois P. Heinz, Rows n = 1..1400, flattened
Omar E. Pol, Illustration of the partitions of n, for n = 1 .. 9
EXAMPLE
Consider row n=8: (1, 2, 5, 22). The divisors of 8 listed in decreasing order are 8, 4, 2, 1 (see A056538). There is 1 partition of 8 into parts divisible by 8. Also, there are 2 partitions of 8 into parts divisible by 4: {(8), (4+4)}; 5 partitions of 8 into parts divisible by 2: {(8), (6+2), (4+4), (4+2+2), (2+2+2+2)}; and 22 partitions of 8 into parts divisible by 1, because A000041(8)=22. Then row 8 is formed by 1, 2, 5, 22.
Triangle begins:
1;
1, 2;
1, 3;
1, 2, 5;
1, 7;
1, 2, 3, 11;
1, 15;
1, 2, 5, 22;
1, 3, 30;
1, 2, 7, 42;
1, 56;
1, 2, 3, 5, 11, 77;
MAPLE
with(numtheory):
b:= proc(n, i, d) option remember;
if n<0 then 0
elif n=0 then 1
elif i<1 then 0
else b(n, i-d, d) +b(n-i, i, d)
fi
end:
T:= proc(n) local l;
l:= sort([divisors(n)[]], `>`);
seq(b(n, n, l[i]), i=1..nops(l))
end:
seq(T(n), n=1..30); # Alois P. Heinz, Oct 21 2011
MATHEMATICA
b[n_, i_, d_] := b[n, i, d] = Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i - d, d] + b[n-i, i, d]]; T[n_] := Module[{l = Divisors[n] // Reverse}, Table[b[n, n, l[[i]]], {i, 1, Length[l]}]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Omar E. Pol, Nov 22 2009
STATUS
approved