login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.
16

%I #16 Jan 24 2023 10:07:55

%S 1,2,1,3,0,1,5,2,0,1,7,0,0,0,1,11,3,2,0,0,1,15,0,0,0,0,0,1,22,5,0,2,0,

%T 0,0,1,30,0,3,0,0,0,0,0,1,42,7,0,0,2,0,0,0,0,1,56,0,0,0,0,0,0,0,0,0,1,

%U 77,11,5,3,0,2,0,0,0,0,0,1

%N Triangle T(n,k) read by rows in which row n lists the number of partitions of n into parts divisible by k.

%C The row-reversed version is A168016.

%C Also see A168020.

%H G. C. Greubel, <a href="/A168021/b168021.txt">Rows n = 1..50 of the triangle, flattened</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpatru.jpg">Illustration of the shell model of partitions (2D and 3D)</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa2dt.jpg">Illustration of the shell model of partitions (2D view)</a>

%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa3dt.jpg">Illustration of the shell model of partitions (3D view)</a>

%F T(n,k) = A000041(n/k) if k|n, else T(n,k)=0.

%F Sum_{k=1..n} T(n, k) = A047968(n).

%F From _G. C. Greubel_, Jan 12 2023: (Start)

%F T(2*n, n) = 2*A000012(n).

%F T(2*n-1, n+1) = A000007(n-2). (End)

%e Triangle begins:

%e ==============================================

%e ...... k: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12

%e ==============================================

%e n=1 ..... 1,

%e n=2 ..... 2, 1,

%e n=3 ..... 3, 0, 1,

%e n=4 ..... 5, 2, 0, 1,

%e n=5 ..... 7, 0, 0, 0, 1,

%e n=6 .... 11, 3, 2, 0, 0, 1,

%e n=7 .... 15, 0, 0, 0, 0, 0, 1,

%e n=8 .... 22, 5, 0, 2, 0, 0, 0, 1,

%e n=9 .... 30, 0, 3, 0, 0, 0, 0, 0, 1,

%e n=10 ... 42, 7, 0, 0, 2, 0, 0, 0, 0, 1,

%e n=11 ... 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

%e n=12 ... 77,11, 5, 3, 0, 2, 0, 0, 0, 0, 0, 1,

%e ...

%t T[n_, k_]:= If[IntegerQ[n/k], PartitionsP[n/k], 0];

%t Table[T[n, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Jan 12 2023 *)

%o (SageMath)

%o def A168021(n,k): return number_of_partitions(n/k) if (n%k)==0 else 0

%o flatten([[A168021(n,k) for k in range(1,n+1)] for n in range(1,16)]) # _G. C. Greubel_, Jan 12 2023

%Y Cf. A000007, A000012, A000041, A035377, A035444, A047968 (row sums).

%Y Cf. A135010, A138121, A168016, A168017, A168018, A168019, A168020.

%K easy,nonn,tabl

%O 1,2

%A _Omar E. Pol_, Nov 20 2009, Nov 21 2009

%E Edited by _Charles R Greathouse IV_, Mar 23 2010