Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 23 2021 10:54:56
%S 1,-1,2,1,0,3,-1,0,2,4,1,0,0,5,5,-1,0,0,2,9,6,1,0,0,0,7,14,7,-1,0,0,0,
%T 2,16,20,8,1,0,0,0,0,9,30,27,9,-1,0,0,0,0,2,25,50,35,10,1,0,0,0,0,0,
%U 11,55,77,44,11,-1,0,0,0,0,0,2,36,105,112,54,12
%N Triangle read by rows: T(n, k) = binomial(k-1, n-k)*(n+1)/(n+1-k), 0 <= k <= n.
%F Sum_{k = 0..n} T(n, k) = A001350(n+1).
%F G.f.: (x^2*y + 1)/((x^4 + 2*x^3 + x^2)*y^2 + (-x^3 - 3*x^2 - 2*x)*y + x + 1). Or: (x^2*y + 1)/((x + 1)*(x*y - 1)*(x^2*y + x*y - 1)). - _Vladimir Kruchinin_, Oct 23 2021
%e [0] 1;
%e [1] -1, 2;
%e [2] 1, 0, 3;
%e [3] -1, 0, 2, 4;
%e [4] 1, 0, 0, 5, 5;
%e [5] -1, 0, 0, 2, 9, 6;
%e [6] 1, 0, 0, 0, 7, 14, 7;
%e .
%e Taylor series: 1 + x*(2*y - 1) + x^2*(3*y^2 + 1) + x^3*(4*y^3 + 2*y^2 - 1) + x^4*(5*y^4 + 5*y^3 + 1) + O(x^5).
%p T := (n, k) -> (n+1)*binomial(k-1, n-k)/(n+1-k);
%p for n from 0 to 11 do seq(T(n,k), k=0..n) od;
%Y Cf. A001350 (row sums), A098599, A100218.
%K sign,tabl
%O 0,3
%A _Peter Luschny_, Oct 01 2014