login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127013
Triangle read by rows: row reversal of A126988.
6
1, 1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 0, 5, 1, 0, 0, 2, 3, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 2, 0, 4, 8, 1, 0, 0, 0, 0, 0, 3, 0, 9, 1, 0, 0, 0, 0, 2, 0, 0, 5, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 2, 0, 3, 4, 6, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
OFFSET
1,3
COMMENTS
Let j = reversed indices of row terms. Then for any row, j*T(n,k) = n, for nonzero T(n,k). For example, in row 10, we match the terms with their j indices: (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), (dot product) (10, 9, 8, 7, 6, 5, 4, 3, 2, 1); getting (10, 0, 0, 0, 0, 10, 0, 0, 10, 10).
The factors of n are found in each row in order, as nonzero terms; e.g., 10 has the factors 1, 2, 5, 10, sum 18.
Row sums = sigma(n), A000203.
REFERENCES
David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.
LINKS
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 0, 3;
1, 0, 2, 4;
1, 0, 0, 0, 5;
1, 0, 0, 2, 3, 6;
1, 0, 0, 0, 0, 0, 7;
1, 0, 0, 0, 2, 0, 4, 8;
1, 0, 0, 0, 0, 0, 3, 0, 9;
1, 0, 0, 0, 0, 2, 0, 0, 5, 10;
Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.
MATHEMATICA
T[n_, m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n, n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
PROG
(Haskell)
a127013 n k = a127013_tabl !! (n-1) !! (k-1)
a127013_row n = a127013_tabl !! (n-1)
a127013_tabl = map reverse a126988_tabl
-- Reinhard Zumkeller, Jan 20 2014
(PARI) {T(n, k) = if(n%k==0, n/k, 0)};
for(n=1, 12, for(k=1, n, print1(T(n, n-k+1), ", "))) \\ G. C. Greubel, Jun 03 2019
(Magma) [[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
(Sage)
def T(n, k):
if (n%k==0): return n/k
else: return 0
[[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019
CROSSREFS
Sequence in context: A130055 A202452 A376789 * A117362 A247492 A113214
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Jan 02 2007
EXTENSIONS
T(10,10) fixed by Reinhard Zumkeller, Jan 20 2014
More terms added by G. C. Greubel, Jun 03 2019
STATUS
approved