OFFSET
1,3
COMMENTS
Let j = reversed indices of row terms. Then for any row, j*T(n,k) = n, for nonzero T(n,k). For example, in row 10, we match the terms with their j indices: (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), (dot product) (10, 9, 8, 7, 6, 5, 4, 3, 2, 1); getting (10, 0, 0, 0, 0, 10, 0, 0, 10, 10).
The factors of n are found in each row in order, as nonzero terms; e.g., 10 has the factors 1, 2, 5, 10, sum 18.
Row sums = sigma(n), A000203.
REFERENCES
David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..7875
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 0, 3;
1, 0, 2, 4;
1, 0, 0, 0, 5;
1, 0, 0, 2, 3, 6;
1, 0, 0, 0, 0, 0, 7;
1, 0, 0, 0, 2, 0, 4, 8;
1, 0, 0, 0, 0, 0, 3, 0, 9;
1, 0, 0, 0, 0, 2, 0, 0, 5, 10;
Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.
MATHEMATICA
T[n_, m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n, n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
PROG
(Haskell)
a127013 n k = a127013_tabl !! (n-1) !! (k-1)
a127013_row n = a127013_tabl !! (n-1)
a127013_tabl = map reverse a126988_tabl
-- Reinhard Zumkeller, Jan 20 2014
(PARI) {T(n, k) = if(n%k==0, n/k, 0)};
for(n=1, 12, for(k=1, n, print1(T(n, n-k+1), ", "))) \\ G. C. Greubel, Jun 03 2019
(Magma) [[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jun 03 2019
(Sage)
def T(n, k):
if (n%k==0): return n/k
else: return 0
[[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jun 03 2019
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Jan 02 2007
EXTENSIONS
T(10,10) fixed by Reinhard Zumkeller, Jan 20 2014
More terms added by G. C. Greubel, Jun 03 2019
STATUS
approved