OFFSET
1,2
COMMENTS
REFERENCES
N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-Functions, 2nd ed., Springer, New York, 1996.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
LINKS
FORMULA
A(a(n)) = A138761(n) = Sum_{k=0..a(n)} a(n)!/k! for n > 0. - Jonathan Sondow, Jun 12 2009
EXAMPLE
A(0) = 1, A(1) = 2, A(2) = 5 and A(3) = 16 = 2^4, so a(1) = 1 and a(2) = a(3) = a(4) = 3. Also, A(19) = 330665665962404000 is the first A(k) divisible by 2^5, so a(5) = 19.
MATHEMATICA
a522[n_] := E Gamma[n + 1, 1];
a[1] = 1; a[n_] := a[n] = For[k = a[n - 1], True, k++, If[Mod[a522[k], 2^n] == 0, Print[n, " ", k]; Return[k]]];
Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Feb 20 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Kyle Schalm (kschalm(AT)math.utexas.edu), Jan 07 2007
STATUS
approved