OFFSET
1,1
COMMENTS
Conjecture: the sequence is infinite. (Motivation: the string HTHTHT. . of length n eventually occurs in any sufficiently long sequence of coin tosses.)
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A4.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..45
Jens Kruse Andersen, Consecutive Congruent Primes
FORMULA
a(n) = A247384(n) if and only if n > 1 and a(n) < a(n+1).
EXAMPLE
{Prime[k], Mod[ Prime[k], 4]} = {{3, 3}, {5, 1}, {7, 3}, {11, 3}, {13, 1}, {17, 1}, {19, 3}, {23, 3}, {29, 1}}, {31, 3}, {37, 1}, . . for k = 2, 3, 4, . ., so a(n) = 3, 3, 3, 23 for n = 1, 2, 3, 4.
MATHEMATICA
j = 2; T = Table[ While[ Product[ Mod[ Prime[k + 1] - Prime[k], 4], {k, j, j + n}] == 0, j++]; Prime[j], {n, 0, 15}]; Prepend[T, 3]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jun 25 2017
EXTENSIONS
a(18)-a(27) from Alois P. Heinz, Jun 26 2017
a(28)-a(34) from Giovanni Resta, Jul 02 2017
STATUS
approved