login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289116
Coefficients of the modular function j_4 = j^4 - 2976*j^3 + 2533680*j^2 - 561444608*j + 8507424792.
4
1, 0, 0, 0, 0, 80983425024, 1605963589611520, 3497254878743101440, 2372487089726272143636, 757799904995573560115200, 141229812746254212446109696, 17462756899435506538441605120, 1558432024683984450558995200000, 106457463303015185075488607502336
OFFSET
-4,6
LINKS
D. Zagier, Traces of singular moduli, see p. 9.
FORMULA
a(n) ~ exp(8*Pi*sqrt(n)) / n^(3/4). - Vaclav Kotesovec, Jun 29 2017
EXAMPLE
G.f.: 1/q^4 + 80983425024*q + 1605963589611520*q^2 + 3497254878743101440*q^3 + ...
CROSSREFS
Cf. A014708 (j_1), A288843 (j_2), A288844 (j_3), this sequence (j_4), A289148 (j_5), A289149 (j_6).
Cf. A000521 (j), A028515 ((q*j)^2), A288846 ((q*j)^3).
Cf. A289141.
Sequence in context: A287246 A022252 A034653 * A249621 A227280 A172548
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 25 2017
STATUS
approved