login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227280
Values of the difference d for 12 primes in geometric-arithmetic progression with the minimal sequence {13*13^j + j*d}, j = 0 to 11.
0
81647160420, 170655787050, 211212209880, 227961624450
OFFSET
1,1
COMMENTS
Primality requires d to be multiple of 7# = 2*3*5*7 = 210.
Fifth term is > (1600*10^6)*(210) = 336000000000.
LINKS
Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
EXAMPLE
d = 170655787050 then {13*13^j + j*d}, j = 0 to 11, is {13, 170655787219, 341311576297, 511967389711, 682623519493, 853283762059, 1023997470817, 1195406240071, 1375850795773, 1673760575299, 3498718264537, 25175298780031}, which is 12 primes in geometric-arithmetic progression.
MATHEMATICA
Clear[p]; p = 13; gapset12d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d, p*p^6 + 6*d, p*p^7 + 7*d, p*p^8 + 8*d, p*p^9 + 9*d, p*p^10 + 10*d, p*p^11 + 11*d}] == {True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[gapset12d, d]], {d, 2, 10^11, 2}]; gapset12d
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Jul 05 2013
STATUS
approved