OFFSET
1,1
COMMENTS
Primality requires d to be multiple of 7# = 2*3*5*7 = 210.
Fifth term is > (1600*10^6)*(210) = 336000000000.
LINKS
Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
EXAMPLE
d = 170655787050 then {13*13^j + j*d}, j = 0 to 11, is {13, 170655787219, 341311576297, 511967389711, 682623519493, 853283762059, 1023997470817, 1195406240071, 1375850795773, 1673760575299, 3498718264537, 25175298780031}, which is 12 primes in geometric-arithmetic progression.
MATHEMATICA
Clear[p]; p = 13; gapset12d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d, p*p^4 + 4*d, p*p^5 + 5*d, p*p^6 + 6*d, p*p^7 + 7*d, p*p^8 + 8*d, p*p^9 + 9*d, p*p^10 + 10*d, p*p^11 + 11*d}] == {True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[gapset12d, d]], {d, 2, 10^11, 2}]; gapset12d
CROSSREFS
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Jul 05 2013
STATUS
approved