login
A227282
First primes of arithmetic progressions of 7 primes each with the common difference 210.
6
47, 179, 199, 409, 619, 829, 881, 1091, 1453, 3499, 3709, 3919, 10529, 10627, 10837, 10859, 11069, 11279, 14423, 20771, 22697, 30097, 30307, 31583, 31793, 32363, 41669, 75703, 93281, 95747, 120661, 120737, 120871, 120947, 129287, 140603, 153319, 153529
OFFSET
1,1
COMMENTS
The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 7, we have d = 5*5# = 150 and there is ONLY one AP-7 with this difference: {7, 157, 307, 457, 607, 757, 907}.
LINKS
Sameen Ahmed Khan and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2484 terms from Khan)
EXAMPLE
p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
MATHEMATICA
Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p
Select[Prime[Range[15000]], And@@PrimeQ[NestList[210+#&, #, 6]]&] (* Harvey P. Dale, Nov 16 2013 *)
PROG
(PARI) is(p)=forstep(k=p, p+1260, 210, if(!isprime(k), return(0))); 1 \\ Charles R Greathouse IV, Dec 19 2013
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Jul 05 2013
STATUS
approved