OFFSET
1,1
COMMENTS
The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 7, we have d = 5*5# = 150 and there is ONLY one AP-7 with this difference: {7, 157, 307, 457, 607, 757, 907}.
LINKS
Sameen Ahmed Khan and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2484 terms from Khan)
EXAMPLE
p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
MATHEMATICA
Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p
Select[Prime[Range[15000]], And@@PrimeQ[NestList[210+#&, #, 6]]&] (* Harvey P. Dale, Nov 16 2013 *)
PROG
(PARI) is(p)=forstep(k=p, p+1260, 210, if(!isprime(k), return(0))); 1 \\ Charles R Greathouse IV, Dec 19 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Sameen Ahmed Khan, Jul 05 2013
STATUS
approved