login
Triangle read by rows: row reversal of A126988.
6

%I #20 Sep 19 2024 04:15:43

%S 1,1,2,1,0,3,1,0,2,4,1,0,0,0,5,1,0,0,2,3,6,1,0,0,0,0,0,7,1,0,0,0,2,0,

%T 4,8,1,0,0,0,0,0,3,0,9,1,0,0,0,0,2,0,0,5,10,1,0,0,0,0,0,0,0,0,0,11,1,

%U 0,0,0,0,0,2,0,3,4,6,12,1,0,0,0,0,0,0,0,0,0,0,0,13

%N Triangle read by rows: row reversal of A126988.

%C Let j = reversed indices of row terms. Then for any row, j*T(n,k) = n, for nonzero T(n,k). For example, in row 10, we match the terms with their j indices: (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), (dot product) (10, 9, 8, 7, 6, 5, 4, 3, 2, 1); getting (10, 0, 0, 0, 0, 10, 0, 0, 10, 10).

%C The factors of n are found in each row in order, as nonzero terms; e.g., 10 has the factors 1, 2, 5, 10, sum 18.

%C Row sums = sigma(n), A000203.

%D David Wells, "Prime Numbers, The Most Mysterious Figures in Math", John Wiley & Sons, 2005, Appendix.

%H Reinhard Zumkeller, <a href="/A127013/b127013.txt">Table of n, a(n) for n = 1..7875</a>

%e First few rows of the triangle are:

%e 1;

%e 1, 2;

%e 1, 0, 3;

%e 1, 0, 2, 4;

%e 1, 0, 0, 0, 5;

%e 1, 0, 0, 2, 3, 6;

%e 1, 0, 0, 0, 0, 0, 7;

%e 1, 0, 0, 0, 2, 0, 4, 8;

%e 1, 0, 0, 0, 0, 0, 3, 0, 9;

%e 1, 0, 0, 0, 0, 2, 0, 0, 5, 10;

%e Row 10 = (1, 0, 0, 0, 0, 2, 0, 0, 5, 10), reversal of 10th row of A126988.

%t T[n_,m_]:= If[Mod[n, m]==0, n/m, 0]; Table[T[n,n-m+1], {n, 1, 12}, {m, 1, n}]//Flatten (* _G. C. Greubel_, Jun 03 2019 *)

%o (Haskell)

%o a127013 n k = a127013_tabl !! (n-1) !! (k-1)

%o a127013_row n = a127013_tabl !! (n-1)

%o a127013_tabl = map reverse a126988_tabl

%o -- _Reinhard Zumkeller_, Jan 20 2014

%o (PARI) {T(n, k) = if(n%k==0, n/k, 0)};

%o for(n=1,12, for(k=1,n, print1(T(n,n-k+1), ", "))) \\ _G. C. Greubel_, Jun 03 2019

%o (Magma) [[(n mod (n-k+1)) eq 0 select n/(n-k+1) else 0: k in [1..n]]: n in [1..12]]; // _G. C. Greubel_, Jun 03 2019

%o (Sage)

%o def T(n, k):

%o if (n%k==0): return n/k

%o else: return 0

%o [[T(n, n-k+1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jun 03 2019

%Y Cf. A126988, A000203.

%K nonn,tabl,easy

%O 1,3

%A _Gary W. Adamson_, Jan 02 2007

%E T(10,10) fixed by _Reinhard Zumkeller_, Jan 20 2014

%E More terms added by _G. C. Greubel_, Jun 03 2019