login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247490
Square array read by antidiagonals: A(k, n) = (-1)^(n+1)* hypergeom([k, -n+1], [], 1) for n>0 and A(k,0) = 0 (n>=0, k>=1).
1
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 3, 2, 0, 1, 3, 7, 11, 9, 0, 1, 4, 13, 32, 53, 44, 0, 1, 5, 21, 71, 181, 309, 265, 0, 1, 6, 31, 134, 465, 1214, 2119, 1854, 0, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 0, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496
OFFSET
0,13
EXAMPLE
k\n
[1], 0, 1, 0, 1, 2, 9, 44, 265, 1854, ... A000166
[2], 0, 1, 1, 3, 11, 53, 309, 2119, 16687, ... A000255
[3], 0, 1, 2, 7, 32, 181, 1214, 9403, 82508, ... A000153
[4], 0, 1, 3, 13, 71, 465, 3539, 30637, 296967, ... A000261
[5], 0, 1, 4, 21, 134, 1001, 8544, 81901, 870274, ... A001909
[6], 0, 1, 5, 31, 227, 1909, 18089, 190435, 2203319, ... A001910
[7], 0, 1, 6, 43, 356, 3333, 34754, 398959, 4996032, ... A176732
[8], 0, 1, 7, 57, 527, 5441, 61959, 770713, 10391023, ... A176733
The referenced sequences may have a different offset or other small deviations.
MAPLE
A := (k, n) -> `if`(n<2, n, hypergeom([k, -n+1], [], 1)*(-1)^(n+1));
seq(print(seq(round(evalf(A(k, n), 100)), n=0..8)), k=1..8);
PROG
(Sage)
from mpmath import mp, hyp2f0
mp.dps = 25; mp.pretty = True
def A247490(k, n):
if n < 2: return n
if k == 1 and n == 2: return 0 # (failed to converge)
return int((-1)^(n+1)*hyp2f0(k, -n+1, 1))
for k in (1..8): print([k], [A247490(k, n) for n in (0..8)])
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 20 2014
STATUS
approved