login
A050075
a(n) = |a(n-1) - a(m)| for n >= 4, where m = n - 1 - 2^p and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
0
1, 2, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 2, 0, 0, 1, 0, 2, 2, 1, 0, 2, 2, 2, 1, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 2, 2, 2, 1, 1, 1
OFFSET
1,2
PROG
(PARI) lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 3; for(n=4, nn, va[n] = abs(va[n-1] - va[n - 1 - 2^logint(n-2, 2)])); va; } \\ Petros Hadjicostas, May 15 2020
CROSSREFS
Sequence in context: A079757 A071493 A289813 * A350110 A247490 A002120
KEYWORD
nonn
EXTENSIONS
Name edited by Petros Hadjicostas, May 16 2020
STATUS
approved