login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356001
Expansion of e.g.f. -LambertW((1 - exp(3*x))/3).
2
0, 1, 5, 36, 379, 5461, 100476, 2250613, 59432141, 1807959042, 62262816157, 2394551966401, 101724440338494, 4730814590128615, 239057921691911861, 13042779411190737420, 764136645388807739239, 47846833035272035228849, 3188740106752561252031364
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} 3^(n-k) * k^(k-1) * Stirling2(n,k).
a(n) ~ 3^(n - 1/2) * sqrt(exp(1) + 3) * n^(n-1) / (exp(n) * (log(exp(1) + 3) - 1)^(n - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (log(1 + 3 * x * exp(-x)))/3 ). - Seiichi Manyama, Sep 11 2024
MATHEMATICA
With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[3*x])/3], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(3*x))/3))))
(PARI) a(n) = sum(k=1, n, 3^(n-k)*k^(k-1)*stirling(n, k, 2));
CROSSREFS
Cf. A357336.
Sequence in context: A031971 A247496 A302584 * A230887 A365356 A194958
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved