login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194958
E.g.f. satisfies: A(x) = cosh(x) + x*A(x)^2.
3
1, 1, 5, 36, 409, 6280, 121501, 2839424, 77834737, 2449360512, 87040440181, 3447798906112, 150645874207753, 7197909122453504, 373365727806824845, 20895734364795187200, 1255062315134651501281, 80528111291313595580416, 5497183726333878664852453
OFFSET
0,3
COMMENTS
The radius of convergence r of the e.g.f. A(x) satisfies: r = 1/(4*cosh(r)) = limit (n+1)*a(n)/a(n+1) = 0.24280736240... with A(r) = 1/(2*r) = 2.059245630...
LINKS
FORMULA
E.g.f.: A(x) = (1 - sqrt(1 - 4*x*cosh(x))) / (2*x).
a(n) = (1 + (-1)^n)/2 + n*Sum_{k=0..n-1} C(n-1,k)*a(k)*a(n-1-k) for n>=0.
a(n) ~ n! * sqrt(cosh(r)+r*sinh(r))/(2*r^(n+1/2)*sqrt(Pi)*n^(3/2)), where r = 0.2428073624... is defined in the comment. - Vaclav Kotesovec, Sep 21 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 36*x^3/3! + 409*x^4/4! + 6280*x^5/5! +...
Related expansion:
A(x)^2 = 1 + 2*x + 12*x^2/2! + 102*x^3/3! + 1256*x^4/4! + 20250*x^5/5! +...
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x*Cosh[x]])/(2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 21 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff((1 - sqrt(1 - 4*x*cosh(x +O(x^(n+2))))) / (2*x), n)}
(PARI) {a(n)=(1 + (-1)^n)/2 +n*sum(k=0, n-1, binomial(n-1, k)*a(k)*a(n-1-k))}
CROSSREFS
Sequence in context: A356001 A230887 A365356 * A241346 A132686 A322180
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2011
STATUS
approved