OFFSET
1,2
COMMENTS
The sequence is formed by concatenating triples of the form (n, n+1, n+2) for n>=1. See A194961 and A194962 for the associated fractalization and interspersion. The sequence can be obtained from A008611 by deleting its first four terms.
The sequence contains every positive integer n exactly min(n,3) times. - Wesley Ivan Hurt, Dec 17 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
From R. J. Mathar, Sep 07 2011: (Start)
a(n) = ((-1)^n*A130772(n) + n + 4)/3.
G.f.: x*(1 + x + x^2 - 2*x^3)/((1+x+x^2)*(1-x)^2). (End)
a(n) = a(n-1) + a(n-3) - a(n-4). - Vincenzo Librandi, Dec 17 2013
a(n) = a(n-3) + 1, n >= 1, with input a(-2) = 0, a(-1) = 1 and a(0) = 2. Proof trivial. a(n) = A008611(n+3), n >= -2. See the first comment above. - Wolfdieter Lang, May 06 2017
From Guenther Schrack, Nov 09 2020: (Start)
a(n) = n - 2*floor((n-1)/3).
a(n) = (n + 2 + 2*((n-1) mod 3))/3.
a(n) = (3*n + 12 + 2*(w^(2*n)*(1 - w) + w^n*(2 + w)))/9, where w = (-1 + sqrt(-3))/2.
a(n) = (n + 4 + 2*A049347(n))/3.
a(n) = (2*n + 3 - A330396(n-1))/3. (End)
a(n) = (n + 4 - 2*A010892(2*n+4))/3. - G. C. Greubel, Oct 23 2022
MAPLE
A194960:=n->floor((n+2)/3)+((n-1) mod 3); seq(A194960(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
MATHEMATICA
(* First program *)
p[n_]:= Floor[(n+2)/3] + Mod[n-1, 3]
Table[p[n], {n, 1, 90}] (* A194960 *)
g[1] = {1}; g[n_]:= Insert[g[n-1], n, p[n]]
f[1] = g[1]; f[n_]:= Join[f[n-1], g[n]]
f[20] (* A194961 *)
row[n_]:= Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_]:= Part[row[n], k];
w = Flatten[Table[v[k, n-k+1], {n, 1, 13}, {k, 1, n}]] (* A194962 *)
q[n_]:= Position[w, n];
Flatten[Table[q[n], {n, 1, 80}]] (* A194963 *)
(* Other programs *)
CoefficientList[Series[(1 +x +x^2 -2 x^3)/((1+x+x^2) (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 17 2013 *)
Table[(n+4 -2*ChebyshevU[2*n+4, 1/2])/3, {n, 80}] (* G. C. Greubel, Oct 23 2022 *)
PROG
(Magma) I:=[1, 2, 3, 2]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Dec 17 2013
(PARI) a(n)=(n+2)\3 + (n-1)%3 \\ Charles R Greathouse IV, Sep 02 2015
(SageMath) [(n+4 - 2*chebyshev_U(2*n+4, 1/2))/3 for n in (1..80)] # G. C. Greubel, Oct 23 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 06 2011
STATUS
approved