login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor((n+2)/3) + ((n-1) mod 3).
8

%I #47 Oct 23 2022 23:11:25

%S 1,2,3,2,3,4,3,4,5,4,5,6,5,6,7,6,7,8,7,8,9,8,9,10,9,10,11,10,11,12,11,

%T 12,13,12,13,14,13,14,15,14,15,16,15,16,17,16,17,18,17,18,19,18,19,20,

%U 19,20,21,20,21,22,21,22,23,22,23,24,23,24,25,24,25,26,25,26

%N a(n) = floor((n+2)/3) + ((n-1) mod 3).

%C The sequence is formed by concatenating triples of the form (n, n+1, n+2) for n>=1. See A194961 and A194962 for the associated fractalization and interspersion. The sequence can be obtained from A008611 by deleting its first four terms.

%C The sequence contains every positive integer n exactly min(n,3) times. - _Wesley Ivan Hurt_, Dec 17 2013

%H Vincenzo Librandi, <a href="/A194960/b194960.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).

%F From _R. J. Mathar_, Sep 07 2011: (Start)

%F a(n) = ((-1)^n*A130772(n) + n + 4)/3.

%F G.f.: x*(1 + x + x^2 - 2*x^3)/((1+x+x^2)*(1-x)^2). (End)

%F a(n) = A006446(n)/floor(sqrt(A006446(n))). - _Benoit Cloitre_, Jan 15 2012

%F a(n) = a(n-1) + a(n-3) - a(n-4). - _Vincenzo Librandi_, Dec 17 2013

%F a(n) = a(n-3) + 1, n >= 1, with input a(-2) = 0, a(-1) = 1 and a(0) = 2. Proof trivial. a(n) = A008611(n+3), n >= -2. See the first comment above. - _Wolfdieter Lang_, May 06 2017

%F From _Guenther Schrack_, Nov 09 2020: (Start)

%F a(n) = n - 2*floor((n-1)/3).

%F a(n) = (n + 2 + 2*((n-1) mod 3))/3.

%F a(n) = (3*n + 12 + 2*(w^(2*n)*(1 - w) + w^n*(2 + w)))/9, where w = (-1 + sqrt(-3))/2.

%F a(n) = (n + 4 + 2*A049347(n))/3.

%F a(n) = (2*n + 3 - A330396(n-1))/3. (End)

%F a(n) = (n + 4 - 2*A010892(2*n+4))/3. - _G. C. Greubel_, Oct 23 2022

%p A194960:=n->floor((n+2)/3)+((n-1) mod 3); seq(A194960(n), n=1..100); # _Wesley Ivan Hurt_, Dec 17 2013

%t (* First program *)

%t p[n_]:= Floor[(n+2)/3] + Mod[n-1, 3]

%t Table[p[n], {n, 1, 90}] (* A194960 *)

%t g[1] = {1}; g[n_]:= Insert[g[n-1], n, p[n]]

%t f[1] = g[1]; f[n_]:= Join[f[n-1], g[n]]

%t f[20] (* A194961 *)

%t row[n_]:= Position[f[30], n];

%t u = TableForm[Table[row[n], {n, 1, 5}]]

%t v[n_, k_]:= Part[row[n], k];

%t w = Flatten[Table[v[k, n-k+1], {n, 1, 13}, {k, 1, n}]] (* A194962 *)

%t q[n_]:= Position[w, n];

%t Flatten[Table[q[n], {n, 1, 80}]] (* A194963 *)

%t (* Other programs *)

%t CoefficientList[Series[(1 +x +x^2 -2 x^3)/((1+x+x^2) (1-x)^2), {x, 0, 100}], x] (* _Vincenzo Librandi_, Dec 17 2013 *)

%t Table[(n+4 -2*ChebyshevU[2*n+4, 1/2])/3, {n,80}] (* _G. C. Greubel_, Oct 23 2022 *)

%o (Magma) I:=[1,2,3,2]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..100]]; // _Vincenzo Librandi_, Dec 17 2013

%o (PARI) a(n)=(n+2)\3 + (n-1)%3 \\ _Charles R Greathouse IV_, Sep 02 2015

%o (SageMath) [(n+4 - 2*chebyshev_U(2*n+4, 1/2))/3 for n in (1..80)] # _G. C. Greubel_, Oct 23 2022

%Y Cf. A006446, A008611, A010892, A047878, A049347, A130772, A194961, A194962, A194963, A330396.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Sep 06 2011