login
A194955
Slowest increasing sequence of primes such that a(1)=2, a(n)-a(n-1) is a multiple of A000120(a(n-1)).
2
2, 3, 5, 7, 13, 19, 31, 41, 47, 67, 73, 79, 89, 97, 103, 113, 137, 149, 157, 167, 197, 229, 239, 281, 293, 313, 353, 373, 379, 421, 431, 487, 557, 577, 601, 631, 659, 709, 719, 733, 761, 859, 887, 911, 953, 967, 1009, 1051, 1061, 1069, 1109, 1129, 1229, 1259, 1301
OFFSET
1,1
LINKS
MAPLE
A000120 := proc(n)
wt(n) ;
end proc:
A194955 := proc(n)
option remember;
local p;
if n = 1 then
2;
else
p := nextprime(procname(n-1)) ;
while (p-procname(n-1)) mod A000120(procname(n-1)) <> 0 do
p := nextprime(p);
end do;
p ;
end if;
end proc:
seq(A194955(n), n=1..80) ; # R. J. Mathar, Sep 20 2011
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1], s = DigitCount[a[n - 1], 2, 1]}, k += s; While[! PrimeQ[k], k += s]; k]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
CROSSREFS
Sequence in context: A175762 A088091 A332088 * A217884 A101045 A114847
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Sep 06 2011
STATUS
approved