The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101045 Record size primes in A101044. 6
 2, 3, 5, 7, 13, 19, 31, 43, 53, 67, 79, 101, 149, 157, 163, 181, 197, 227, 307, 349, 379, 409, 431, 619, 631, 661, 691, 751, 757, 811, 829, 1093, 1117, 1217, 1279, 1423, 1453, 1481, 1531, 1549, 1579, 1759, 1877, 2239, 2273, 2287, 2383, 2447, 2659, 2671, 2707 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence (except 2) is also the record size primes in the longer A020483. Conjecture: lim_{n->infinity} a(n)/n^2 = 1. - Ya-Ping Lu, Sep 24 2020 LINKS J. K. Andersen, Prime gaps (not necessarily consecutive). Taras Goy and Mark Shattuck, Determinant Formulas of Some Hessenberg Matrices with Jacobsthal Entries, Applications and Appl. Math.: An Int'l J. (2021) Vol. 16, Issue 1, Art. 10. Mike Oakes, Ed Pegg Jr, and Jens Kruse Andersen, Prime gaps (not necessarily consecutive), digest of 5 messages in primenumbers Yahoo group, Nov 26 - Nov 27, 2004. [Cached copy] PROG (Python) from sympy import isprime, nextprime m = p_max = 0 while m >= 0:     p = 2     while isprime(p + 2*m) == 0:         p = nextprime(p)     if p > p_max:         print(p)         p_max = p     m += 1 # Ya-Ping Lu, Sep 24 2020 CROSSREFS Cf. A020483, A101042, A101043, A101044, A101046. Sequence in context: A332088 A194955 A217884 * A114847 A171969 A075580 Adjacent sequences:  A101042 A101043 A101044 * A101046 A101047 A101048 KEYWORD nonn AUTHOR Jens Kruse Andersen, Nov 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 09:37 EST 2022. Contains 350565 sequences. (Running on oeis4.)