|
|
A020483
|
|
Least prime p such that p+2n is also prime.
|
|
28
|
|
|
2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13, 11, 31, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
It is conjectured that a(n) always exists. a(n) has been computed for n < 5 * 10^11, with largest value a(248281210271) = 3307. - Jens Kruse Andersen, Nov 28 2004
If a(n) = a(n+1) = k, then 2*n + k and 2*(n+1) + k are twin primes. - Ya-Ping Lu, Sep 22 2020
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..10000
Jens Kruse Andersen, Prime gaps (not necessarily consecutive), Yahoo! group "primenumbers", Nov 26 2004.
Jens Kruse Andersen, Mike Oakes, Ed Pegg Jr, Prime gaps (not necessarily consecutive), digest of 5 messages in primenumbers Yahoo group, Nov 26 - Nov 27, 2004.
|
|
FORMULA
|
If a(n) exists, a(n) < 2n, which of course is a great overestimate. - T. D. Noe, Jul 16 2002
a(n) = A087711(n) - n. - Zak Seidov, Nov 28 2007
a(n) = A020484(n) - 2n. - Zak Seidov, May 29 2014
a(n) = 2 if and only if n = 0. - Alonso del Arte, Mar 14 2018
|
|
EXAMPLE
|
Given n = 2, we see that 2 + 2n = 6 = 2 * 3, but 3 + 2n = 7, which is prime, so a(2) = 3.
Given n = 3, we see that 2 + 2n = 8 = 2^3 and 3 + 2n = 9 = 3^2, but 5 + 2n = 11, which is prime, so a(3) = 5.
|
|
MAPLE
|
A020483 := proc(n)
local p;
p := 2;
while true do
if isprime(p+2*n) then
return p;
end if;
p := nextprime(p) ;
end do:
end proc:
seq(A020483(n), n=0..40); # R. J. Mathar, Sep 23 2016
|
|
MATHEMATICA
|
Table[j = 1; found = False; While[!found, j++; found = PrimeQ[Prime[j] + 2i]]; Prime[j], {i, 200}]
leastPrimep2n[n_] := Block[{k = 1, p, q = 2 n}, While[p = Prime@k; !PrimeQ[p + q], k++]; p]; Array[leastPrimep2n, 102] (* Robert G. Wilson v, Mar 26 2008 *)
|
|
PROG
|
(PARI) a(n)=forprime(p=2, , if(isprime(p+2*n), return(p))) \\ Charles R Greathouse IV, Mar 19 2014
(Haskell)
a020483 n = head [p | p <- a000040_list, a010051' (p + 2 * n) == 1]
-- Reinhard Zumkeller, Nov 29 2014
(GAP) P:=Filtered([1..10000], IsPrime);;
a:=List(List([0..110], n->Filtered(P, i->IsPrime(i+2*n))), Minimum); # Muniru A Asiru, Mar 26 2018
|
|
CROSSREFS
|
Cf. A087711, A101042, A101043, A101044, A101045, A101046.
Cf. A101045, A239392 (record values).
Cf. A000040, A010051, A020484, A237055.
It is likely that A054906 is an identical sequence, although this seems to have not yet been proved. - N. J. A. Sloane, Feb 06 2017
Sequence in context: A063256 A229703 A131320 * A119912 A076368 A279931
Adjacent sequences: A020480 A020481 A020482 * A020484 A020485 A020486
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
EXTENSIONS
|
a(0)=2 added by N. J. A. Sloane, Apr 25 2015
|
|
STATUS
|
approved
|
|
|
|