login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229703
Decimal expansion of Sum_{k>=1} (-1)^k/(k*binomial(4k,k)) (negated).
2
2, 3, 3, 5, 3, 2, 4, 1, 7, 4, 8, 5, 1, 7, 1, 9, 8, 8, 7, 8, 7, 1, 6, 8, 1, 3, 9, 4, 8, 9, 6, 0, 3, 8, 2, 1, 7, 5, 6, 9, 1, 1, 2, 1, 6, 0, 1, 9, 6, 6, 6, 2, 5, 1, 8, 0, 6, 2, 4, 3, 5, 4, 3, 5, 9, 9, 3, 9, 3, 1, 3, 9, 2, 4, 3, 5, 4, 6, 7, 7, 8, 9, 0, 6, 4, 1, 1, 8, 6, 4, 7, 6, 3, 4, 4, 3, 8, 5, 7, 6, 4, 7, 7, 2, 4
OFFSET
0,1
LINKS
Necdet Batir and Anthony Sofo, On some series involving reciprocals of binomial coefficients, Appl. Math. Comp. 220 (2013) 331-338, Example 6.
FORMULA
Equals (3*d/(2*d^2+1))*log(abs((d-1)/(d+1))) + (3*(d-1)/(2*(2*d^2+1))) * sqrt(d/(d+2)) * arctan(2*sqrt(d^2+2*d)/(d^2+2*d-1)) - (3*(d+1)/(2*(2*d^2+1))) * sqrt(d/(d-2)) * arctan(2*sqrt(d^2-2*d)/(d^2-2*d-1)), where d = sqrt(1 - (8/sqrt(3))*(((3*sqrt(3)+sqrt(283))/16)^(1/3) - (((3*sqrt(3)+sqrt(283))/16)^(-1/3)))) (Batir and Sofo, 2013). - Amiram Eldar, Dec 07 2024
EXAMPLE
-0.2335324174851719887871681394896038...
MATHEMATICA
HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, -27/256]/4 // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 18 2014 *)
CROSSREFS
Sequence in context: A232932 A252502 A063256 * A348883 A131320 A020483
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Sep 27 2013
STATUS
approved