login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062026
a(n) = n*(n+1)*(n^2 - 3*n + 6)/4.
4
0, 2, 6, 18, 50, 120, 252, 476, 828, 1350, 2090, 3102, 4446, 6188, 8400, 11160, 14552, 18666, 23598, 29450, 36330, 44352, 53636, 64308, 76500, 90350, 106002, 123606, 143318, 165300, 189720, 216752, 246576, 279378, 315350, 354690, 397602, 444296
OFFSET
0,2
COMMENTS
a(n) = 1*2*3 + 2*3*4 + 3*4*5 +. . .+ (n-2)*(n-1)*n +(n-1)*n*1+ n*1*2, the sum of the cyclic product of terms taken three at a time, final term being n*1*2=2n.
FORMULA
a(n) = 2 * A004255(n).
a(0)=0, a(1)=2, a(2)=6, a(3)=18, a(4)=50, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Apr 22 2015
From G. C. Greubel, May 05 2022: (Start)
a(n) = 6*binomial(n+3, 4) - 12*binomial(n+2, 3) + 8*binomial(n+1, 2).
G.f.: 2*x*(1 - 2*x + 4*x^2)/(1-x)^5.
E.g.f.: (1/4)*x*(8 + 4*x + 4*x^2 + x^3)*exp(x). (End)
EXAMPLE
a(4) = 1*2*3 + 2*3*4 + 3*4*1 + 4*1*2 = 50.
MATHEMATICA
Table[n(n+1)(n^2-3n+6)/4, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 2, 6, 18, 50}, 40] (* Harvey P. Dale, Apr 22 2015 *)
PROG
(PARI) a(n) = n*(n+1)*(n^2 -3*n +6)/4 \\ Harry J. Smith, Jul 29 2009
(SageMath) [n*(n+1)*(n^2-3*n+6)/4 for n in (0..40)] # G. C. Greubel, May 05 2022
CROSSREFS
Cf. A004255.
Sequence in context: A256828 A197055 A258625 * A048495 A089380 A271897
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved