OFFSET
0,2
COMMENTS
a(n) = 1*2*3 + 2*3*4 + 3*4*5 +. . .+ (n-2)*(n-1)*n +(n-1)*n*1+ n*1*2, the sum of the cyclic product of terms taken three at a time, final term being n*1*2=2n.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 2 * A004255(n).
a(0)=0, a(1)=2, a(2)=6, a(3)=18, a(4)=50, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Apr 22 2015
From G. C. Greubel, May 05 2022: (Start)
a(n) = 6*binomial(n+3, 4) - 12*binomial(n+2, 3) + 8*binomial(n+1, 2).
G.f.: 2*x*(1 - 2*x + 4*x^2)/(1-x)^5.
E.g.f.: (1/4)*x*(8 + 4*x + 4*x^2 + x^3)*exp(x). (End)
EXAMPLE
a(4) = 1*2*3 + 2*3*4 + 3*4*1 + 4*1*2 = 50.
MATHEMATICA
Table[n(n+1)(n^2-3n+6)/4, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 2, 6, 18, 50}, 40] (* Harvey P. Dale, Apr 22 2015 *)
PROG
(PARI) a(n) = n*(n+1)*(n^2 -3*n +6)/4 \\ Harry J. Smith, Jul 29 2009
(SageMath) [n*(n+1)*(n^2-3*n+6)/4 for n in (0..40)] # G. C. Greubel, May 05 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved