|
|
A256828
|
|
Numbers k such that 7*R_k - 40 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, numbers k such that (7*10^k - 367)/9 is prime.
Terms from Kamada.
a(9) > 30000.
|
|
LINKS
|
Table of n, a(n) for n=1..8.
Makoto Kamada, Near-repdigit numbers of the form AA...AABA.
Makoto Kamada, Prime numbers of the form 77...7737.
Index entries for primes involving repunits.
|
|
EXAMPLE
|
For k=6, 7*R_6 - 40 = 777777 - 40 = 777737 which is prime.
|
|
MATHEMATICA
|
Select[Range[0, 250000], PrimeQ[(7*10^# - 367)/9] &]
|
|
PROG
|
(Magma) [n: n in [2..300] | IsPrime((7*10^n-367) div 9)]; // Vincenzo Librandi, Apr 11 2015
|
|
CROSSREFS
|
Cf. A002275.
Sequence in context: A218759 A295499 A059413 * A197055 A258625 A062026
Adjacent sequences: A256825 A256826 A256827 * A256829 A256830 A256831
|
|
KEYWORD
|
more,hard,nonn
|
|
AUTHOR
|
Robert Price, Apr 10 2015
|
|
STATUS
|
approved
|
|
|
|