The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215785 Number of permutations of 0..floor((n*7-1)/2) on even squares of an n X 7 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing. 1
 1, 5, 42, 262, 2465, 15485, 146205, 918637, 8674386, 54503318, 514658321, 3233726365, 30535100957, 191859642509, 1811672635826, 11383190276278, 107488026474001, 675374034791837, 6377352953765373, 40070496565665517 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Column 7 of A215788. LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 61*a(n-2) - 99*a(n-4) - 2*a(n-6). Empirical g.f.: x*(1 + 5*x - 19*x^2 - 43*x^3 + 2*x^4 - 2*x^5) / (1 - 61*x^2 + 99*x^4 + 2*x^6). - Colin Barker, Jul 23 2018 EXAMPLE Some solutions for n=4: ..0..x..1..x..2..x..3....0..x..1..x..3..x..4....0..x..1..x..2..x..6 ..x..4..x..6..x..7..x....x..2..x..5..x..6..x....x..3..x..4..x..8..x ..5..x..8..x..9..x.12....7..x..8..x..9..x.10....5..x..7..x.10..x.12 ..x.10..x.11..x.13..x....x.11..x.12..x.13..x....x..9..x.11..x.13..x CROSSREFS Cf. A215788. Sequence in context: A266021 A062021 A241780 * A082145 A126765 A228793 Adjacent sequences:  A215782 A215783 A215784 * A215786 A215787 A215788 KEYWORD nonn AUTHOR R. H. Hardin, Aug 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:43 EST 2021. Contains 349437 sequences. (Running on oeis4.)