login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215784
Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1
1, 2, 12, 29, 189, 458, 2988, 7241, 47241, 114482, 746892, 1809989, 11808549, 28616378, 186696108, 452432081, 2951712081, 7153064162, 46667304972, 113091730349, 737821743309, 1788008493098, 11665145978028, 28268860698521
OFFSET
1,2
COMMENTS
Column 6 of A215788.
LINKS
FORMULA
Empirical: a(n) = 16*a(n-2) - 3*a(n-4).
Empirical g.f.: x*(1 + 3*x)*(1 - x - x^2) / (1 - 16*x^2 + 3*x^4). - Colin Barker, Jul 23 2018
EXAMPLE
Some solutions for n=4:
..0..x..1..x..3..x....0..x..1..x..3..x....0..x..1..x..2..x....0..x..1..x..2..x
..x..2..x..5..x..8....x..2..x..5..x..7....x..3..x..4..x..6....x..3..x..4..x..5
..4..x..6..x..9..x....4..x..6..x..9..x....5..x..7..x..9..x....6..x..7..x..9..x
..x..7..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11
CROSSREFS
Cf. A215788.
Sequence in context: A326517 A248119 A240764 * A061780 A249411 A156021
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 23 2012
STATUS
approved