login
A326517
Number of normal multiset partitions of weight n where each part has a different size.
12
1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
OFFSET
0,3
COMMENTS
A multiset partition is normal if it covers an initial interval of positive integers.
EXAMPLE
The a(0) = 1 through a(3) = 12 normal multiset partitions:
{} {{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1,2,2}}
{{1,2,3}}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i))))
end:
a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 23 2023
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@mps/@allnorm[n], UnsameQ@@Length/@#&]], {n, 0, 6}]
PROG
(PARI)
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 12 2019
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Feb 07 2020
STATUS
approved