OFFSET
0,8
COMMENTS
Each element of the k-set must be represented in the multiset partition.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 6, 4;
0, 2, 9, 12, 5;
0, 3, 22, 51, 48, 16;
0, 4, 50, 199, 346, 275, 82;
0, 5, 80, 411, 972, 1175, 708, 169;
0, 6, 134, 939, 3061, 5340, 5160, 2611, 541;
...
The T(3,1) = 2 multiset partitions are:
{{1,1,1}}
{{1},{1,1}}
The T(3,2) = 6 multiset partitions are:
{{1,1,2}}
{{1,2,2}}
{{1},{1,2}}
{{1},{2,2}}
{{2},{1,1}}
{{2},{1,2}}
The T(3,3) = 4 multiset partitions are:
{{1,2,3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
PROG
(PARI)
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))}
M(n)={my(v=vector(n+1, k, R(n, k-1)~)); Mat(vector(n+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
{my(T=M(8)); for(n=1, #T~, print(T[n, ][1..n]))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 08 2020
STATUS
approved